
Broadcom Proprietary and Confidential. Copyright © 2021 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

A very untraditional approach
implementing schema changes

June 2021

Steen Rasmussen, Technical Consulting

Broadcom Mainframe Software Division

Email Address: steen.rasmussen@broadcom.com or Db2steen@yahoo.com

mailto:steen.rasmussen@broadcom.com
mailto:Db2steen@yahoo.com

• Traditional schema change implementation and evolvement

• Challenge-1 : Access Patch changes

• Challenge-2 : What if fallback is required – outage can be long and complex !!!

• Untraditional schema change approach – “cloning” production and how to make
the outage almost disappear when fallback needed

• Data Refresh process from hours to minutes – kill two birds with one stone due to
this “unique” environment

Agenda

• Schema changes used to be “simple” but troublesome (here DB2 V1R1M0)

• Almost all schema changes required the DBA nightmare of UDCL

• Life has become much better and less intrusive and more DBA friendly

• Application outages are being eliminated or reduced dramatically

Traditional schema change implementation and evolvement

• From Db2 V1 through V7
• Add Column at the end of a table

• Add/Drop PK/FK

• Change QTY’s

• Change PCTFREE / FREEPAGE

• Change Tablespace Compression

• Db2 V8 really started to change the capabilities
• Column Data Type and length increase

• Add Partition to the end

• Rotate Partition

Schema Changes Evolvement Over Time

Most changes needed

reorg/load replace to

make them effective

• Db2 V9
• Rename Column, Table, Index (If views etc. then these have to be dropped

and re-created) – the scenario described later illustrates the complexity of
RENAME

• Add column to an index (and INCLUDE clause)

• Db2 10
• UTS tablespace type introduced

• Pending Changes (reorg needed to materialize – much better than
drop/create)

• PGSIZE, SEGSIZE, DSSIZE

• MAXPARTITIONS for PBG

• Column default value

Schema Changes Evolvement Over Time

• Db2 11
• Drop Column (I love it but scared to death)

• Great method to change data type, decrease size or other intrusive change: ADD + DROP)

• LIMITKEY as a pending change

• BP size as a pending change

• Db2 12
• Column length change immediate or pending

(controlled via ZPARM DDL_MATERIALIZATION)

• Relative byte addressing for UTS PBR

• Add Partition in the middle

• Conversion to PBR2 -> partition wise changes much easier
• Especially when partition is getting “full”

Schema Changes Evolvement Over Time

• From Db2 V8 – most schema changes Immediate or Deferred/Pending
• Online Reorg needed to instantiate

• Different types of Advisory Reorg : AREO* and AREOR

• Much less restricted/intrusive compared to REORP ~ “dead in the water”

• The life of a DBA has become a lot better, but
• Still need strong change control for various reasons

• One being DROP COLUMN – if an Online Reorg executed prior to application changes
implemented, someone might change your agenda !!

Schema Changes Evolvement Over Time

• Execute Schema Changes as immediate or as a pending change –
unless Unload-Drop-Create-Load is needed

• Potentially prepare backout script

• Execute Online Reorg to instantiate schema changes – or potentially
Rebuild Index

• If Runstats is needed – potentially as inline stats (improved in Db2 12)

• Rebind Packages
• Downside:

• What about changed Access Path(s)

• Extended Plan Management might not be an option due to schema changes

Traditional schema change implementation and evolvement –
from a highlevel perspective

A real customer Implementation –
the very untraditional approach

• Stand-alone subsystems : Test=6 and Production=3

• Test Data Sharing Groups:
• DSNB – 6 active members

• DSND – 4 active members

• DSNE – 7 active members

• DSNF – 4 active members

• DSNH – 5 active members

• Production Data Sharing Groups:
• DSNA – 11 active members

• DSNG – 12 active members

• DSNI – 8 active members

High Level Overview of Db2 implementation at …….

• “FLASH” process covered later:

• Production “cloned” into:
• DSNA -> DSNL
• DSNG -> DSNM
• DSNI -> DSNN

• Most Db2 sites perform IMMEDIATE or PENDING Changes
• What if fall back

• What about Access Path Changes

• Highlevel overview of schema change process at ….. :
1. Create “FLASH” ~ “Clone” production DDL and Data

(weekly to test schema changes ahead of time in identical environment)

2. Once ready to implement in REAL PROD : start production UT/RO

3. Create new DDL

4. Unload-Load data into new using USS Pipes

5. Rename OLD to OLD_OLD and NEW to OLD

6. Create views etc. REBIND and Start production in RW
Old tablespaces/tables/indexes kept for a week before dropped

7. In case of FALLBACK
Drop views, Reverse RENAME’s and voila !!

Untraditional schema change approach – “cloning” production
and how to make the outage almost disappear.

• Once the “FLASH” environment is established
1. Remember all objects, all data including Packages, Explain tables etc. is available with

identical names (only Db2 subsystem-id is different)
2. Time to practice entire schema change flow in “clone” environment
3. New tablespaces, tables, indexes etc. created
4. Data pumped from original tables to NEW using USS-PIPES
5. Either STATS migration or Runstats
6. Perform Explain and compare before-after access paths – no surprises later in production
7. Rename ORIGINAL TABLES to OLD
8. Rename NEW tables to OLD
9. Create views etc. REBIND and Start in RW

• Time to implement schema changes in production
• Exact same procedure as in “FLASH” environment
• In case of FALLBACK – no worries – will take a few minutes
• Drop views, Reverse RENAME’s and voila !!
• Old tablespaces and data available with almost no outage if fallback needed

More details about the “clone” environment.

• This is named “FLASH ENVIRONMENT”

• Every Sunday at a “quiet point” when no long-running batch:
• SET LOG SUSPEND

• All Db2 DASD with Db2 “flashed” with the NOCOPY option

• SET LOG RESUME

• VSAM RENAME for high-level qualifiers

• Db2 changed to point to these

• LPL issues resolved by Db2

• One member active during backout

• All object names are identical on both sides (makes catalog changes easier)

High Level Description of “Cloning” (home-written)

• This is the process to generate jobs to perform a Table Rename. The
production jobs will be run in weekly “dark window”.

• ISPF panels and REXX’s all home written

Schema Change Process in Further Detail

STEP-1:

The “check out” process is simply
to ensure that no more than one
person will change the same table
or dependent object.

Job details entered and verified.

Schema Change Process in Detail

STEP-2:

Details entered for jobs to be
generated.
Table and tablespace entered to
ensure not in use elsewhere.
Number of CA Fast Unload jobs to
generate using USS Pipes as input to
CA Fast Load (parallel unloads to
limit window). More details later !!
Note that similar technology exists
for both IBM and BMC utilities.

• Specify dataset to place generated jobs, production row-count, “new
object names”, who to notify etc.

Schema Change Process in Detail

STEP-3:

Besides the mentioned parameters,
options to execute REBIND and
RUNSTATS (another option is to
copy statistics).

• Next step is to specify Unload job details.
• The advantage of using pipes is that the load job will start as soon as the pipes

are being filled (saving time)

Schema Change Process in Detail

STEP-4:

Specify how many partitions to
handle in each CA Fast Unload job.
Will run in parallel using USS Pipes.

In this case only 8 unloads executed.

As noted: The “PIPE” technology
isn’t new but advantage using UNIX
System Services is it’s free.

• At this stage the dataset is built with the jobs needed to do a table
rename – following jobname/member convention:
• ENV = BDB2 for special production environment

• Special production environment execution prior to production

• Once finalized – moved to production and scheduled under CA7

• ENV = HDBV for production

• ENV = JDBG for production claim environment

• JDBG*NP are for test (up to 25 environments)

• Can be edited and moved to production and CA7

• Other JDBG jobs for production and executed in “Dark Window”
execution between 02 :00 - 05:30am Sunday

• Once finalized moved to CA7

• $DBM jobs are executed in production cloned environment (FLASH)

• Executed by DBA

Schema Change Process in Detail

• Details of job-identifier suffix (also explains what’s executed):
• $1 : Verbal directions on the entire process and building of each job

• BO : Back out member

• CN : SELECT * for count member

• CR : Create DDL member

• C1 : Performs image copy

• D1 and D2 : Internal jobs to build DDL

• L1 : CA Load job

• NA and NB : : Use of CA Plan Analyzer to capture access paths before and after the rename; this is an
extra review of access path changes

• NM : Object Rename member

• RB : Rebind member

• SC : Review object to verify current standards are met

• SP : Control card builder if needed for LOAD process

• U1-U8 : CA unload members

Schema Change Process in Detail

• More job details and how process is tested in the “FLASH”
environment:

Schema Change Process in Detail

$DBMCP$1 – overall instructions to guide you through the entire process
$DBMCPBO - job to do Back Out
$DBMCPCN – performs COUNT(*) on old object
$DBMCPCR – capture packages that use current table, capture table authorities, perform DDL create of new object using Batch Processor; perform

RUNSTATS on empty new Tablespace; put new TS in UT status
$DBMCPC1 – image copy job
$DBMCPD1 – internal job to build DDL on flash only
$DBMCPD2 – internal job to manipulate updated DDL on flash only
$DBMCPL1 - CA Load job
$DBMCPNA – perform review of packages on table before starting change using Neon product
$DBMCPNB – perform review of packages on table after change using Neon product
$DBMCPNM – Runstats new table after it is populated; statistics will be extracted to a flat file to use to populate other environments, views and view grants
on original table are captured and dropped; current table and current indexes are renamed to old; new table and new indexes are renamed to current
$DBMCPRB - recreate views on the newly renamed table; reestablish grants; perform rebinds of packages and review for changes in access path
$DBMCPSC – basic review done of object in FLASH environment to ensure all standards are met
$DBMCPSP – builds control cards for load process if using DSNTIAUL
$DBMCPU1 – CA Unload job 1 using PIPES
$DBMCPU2 - CA Unload job 2 using PIPES
$DBMCPU3 - CA Unload job 3 using PIPES
$DBMCPU4 - CA Unload job 4 using PIPES
$DBMCPU5 – CA Unload job 5 using PIPES
$DBMCPU6 - CA Unload job 6 using PIPES
$DBMCPU7 - CA Unload job 7 using PIPES
$DBMCPU8 – CA Unload job 8 using PIPES

• Up to 10 created accessing
separate ranges of partitions

• U1 is the only difference
between each unload job –
illustrates the USS Pipe in use

Example of Unload Jobs using USS Pipes

//**

//* UNLOAD - FIRST JOB

//**

//JS03 EXEC PGM=PTLDRIVM,TIME=1439,PARM='EP=UTLGLCTL/DB2M',

// REGION=0M

//CAISLIB INCLUDE MEMBER=CADB2M

//PTIMSG DD SYSOUT=*

//SYSIN DD *,SYMBOLS=EXECSYS

FASTUNLOAD

OUTPUT-FORMAT LOAD

SQL-ACCESS EXTENSION

SHRLEVEL CHANGE

EMPTY-RC 0

ZIIP YES

LRECL-USER YES

SELECT * FROM DB0PCBM0.CBMCFD00

PART 1:13

NEWOBID 1;

//CA11NR DD DUMMY

//SYSPUNCH DD DUMMY

//SYSREC01 DD PATH='/pipes/EF1271U1_SYSREC01',FILEDATA=BINARY,

// PATHOPTS=(OCREAT,OWRONLY),PATHDISP=KEEP,DSNTYPE=PIPE,

// PATHMODE=(SIRUSR,SIWUSR),

// RECFM=FB,LRECL=112

//*

The Load job receiving the 10 unload pipe datasets

//***
//JS01 EXEC PGM=PTLDRIVM,PARM='EP=UTLGLCTL/DB2M',COND=(4,LT),
// REGION=0M,TIME=1439
//CAISLIB INCLUDE MEMBER=CADB2M
//$ORTPARM DD DSN=PDBAPD.CNTL.LIB(SYNCSCAL),DISP=SHR
//SYSMAP DD DSN=DB2PASS.DB2M.L1.DB0PCBM0.CBMCF2.SYSMAP,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(001,150),RLSE)
//SYSERR DD DSN=DB2PASS.DB2M.L1.DB0PCBM0.CBMCF2.SYSERR,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(001,150),RLSE)
//SYSDISC DD DSN=DB2PASS.DB2M.L1.DB0PCBM0.CBMCF2.SYSDISC,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(001,150),RLSE)
//SYSUT1 DD DSN=DB2PASS.DB2M.L1.DB0PCBM0.CBMCF2.SYSUT1,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(001,150),RLSE)
//SORTOUT DD DSN=DB2PASS.DB2M.L1.DB0PCBM0.CBMCF2.SORTOUT,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(001,150),RLSE)
//* SYSMDUMP IS REQUIRED TO DIAGNOSE CA ISSUES.
//SYSMDUMP DD DSN=DB2PASS.DB2M.L1.DB0PCBM0.CBMCF2.SYSMDUMP,
// DISP=(NEW,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(500,500),RLSE),
// DCB=(RECFM=FBS,LRECL=4160,BLKSIZE=0)
//PTIMSG DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSABEND DD DUMMY
//ABNLIGNR DD DUMMY

//SYSIN DD *
FASTLOAD
READER-BLOCKS 2400
INPUT-FORMAT UNLOAD OUTPUT-CONTROL BUILD
ESTIMATED-INPUT 241665031 ENABLE-PFL20 YES
NONLEAF-PCTFREE 0 IO-BUFFERS 250
IXBUFFER-SIZE 1M VSAM-BUFFERS 180
REBUILD-INDEX YES STARTUP-ACCESS FORCE
MAXTASKS AUTO SORTNUM AUTO
SET-COPYPENDING NO
SET-CHECKPENDING NO
DISCARDS 100000
DISPLAY-STATUS 5000000
RESUME NO REPLACE KEEPDICTIONARY
INTO TABLE

DB0PCBM0.CBMXXX00
OBID 1

//SYSULD DD PATH='/pipes/EF1271U1_SYSREC01',FILEDATA=BINARY,
// PATHOPTS=(OCREAT,ORDONLY),PATHDISP=(KEEP),DSNTYPE=PIPE,
// PATHMODE=(SIRUSR,SIWUSR),
// RECFM=FB,LRECL=112
//SYSULD01 DD PATH='/pipes/EF1271U2_SYSREC01',FILEDATA=BINARY,
// PATHOPTS=(OCREAT,ORDONLY),PATHDISP=(KEEP),DSNTYPE=PIPE,
// PATHMODE=(SIRUSR,SIWUSR),
// RECFM=FB,LRECL=112
//SYSULD02 DD PATH='/pipes/EF1271U3_SYSREC01',FILEDATA=BINARY,
// PATHOPTS=(OCREAT,ORDONLY),PATHDISP=(KEEP),DSNTYPE=PIPE,
// PATHMODE=(SIRUSR,SIWUSR),

// RECFM=FB,LRECL=112

……… ETC ……………………………..
//CAOESTOP DD DUMMY

Ten SYSULD
DD cards
specifying
the ten USS
Pipes.

No CPU
savings but
significant
elapsed
savings due
to early start
of load.

JDBGR1CR
Dis locks, Place old TS in RO,

Pkgs, stats extract, create
new Tablespace

Runstats empty, Start UT

JDBGR1L1
CA Load of

New Table

JDBGR1U1-8
CA unload
Old Table

JDBGR1NM
Drop CDC view

RENAME Objects
Update stats

Start spaces in RW

TYPRUN=HOLD
DBA will call for job
release.

CC= 0

CC=0 CC=4

JDBGR1C1
Full shrlevel Chg.

I/C

JDBGR1RB
Recreate view
Rebind pkgs CC=0CC=0

CC=0

Full shrlevel change
Image copy of new
tablespace
aaaccc

CA unloads and CA load – all
run simultaneously using
USS batch pipes

Recreate the view
and execute pkg
rebinds; access path
review

Drop view, rename objects,
Update stats, start all objects in
R/W

Trigger from dummy job: JDBGR1ER
Job-dep: JDBGSWTW
(optional – add PAID release job)
Time: HH:MM AM

TYPRUN=
HOLD
DBA will
call for
job
release.

Dis Locks, Place old tablespace in
RO, Create new tablespace and
objects, capture stats & pkgs used
by old table, Start UT.

JDBGR1CN
SELECT COUNT on

Old table

Version 2.0 (4/09/18)

CC=0

Data Refresh process from hours to minutes

Side effect / benefit from having the “flash / cloned” env.

• Almost every Db2 site has the need – various methods used.

• Besides from data subsetting (different topic):

1. DSN1COPY to do IC-VSAM or VSAM-VSAM. Challenges when +2GB VSAM pagesets,
unequal number of PBG’s, extent processing etc.

2. Unload-Load consumes many resources, advantage is schema differences

3. Recover from production IC to target – with or without log-apply

• All three alternatives have the issue of data consistency
• IC probably done as SHRLEVEL CHANGE and not the same RBA/LRSN

• What about RI constraints

Data Refresh Implementation

• Requirement to “clone” a few tables every night with up to 8 targets
• Biggest table 100 partitions, 3 NPI’s and ~4bn rows

• Used for batch, CICS and web-services (mostly claims processing)

• Old implementation
• Unload and load took almost 3 hours elapsed and hours of CPU

• Impossible to get all 8 environments available every night

• Unavailability of data causing application outages

• Due to the availability of the “flash” environment created weekly this
provides a nice “golden copy” to clone from

Data Refresh Implementation

• New implementation investigated using CA RC/Merger
• Page-level data copy <> row level

• Initial “dirty data cloning” illustrated huge savings

• Data and Indexes cloned in minutes

• Source Db2 VSAM pagesets “moved” – including:
• PAGE RBA RESET, OBID translation, VERSION REPAIR etc.

• Currently production unload and target load
• Used as “golden copy” for remaining environments using RC/Merger

• Next step being looked at (requires shared DASD between the environments) :
• IBM COPY CONSISTENT YES FLASHCOPY YES

• Special entry in SYSCOPY and IN-FLIGHT’s backed out by COPY utility

• No dirty data, no need to rebuild indexes to avoid inconsistences

Data Refresh implementation

• An even more optimized method does exist using RC/Merger

• In this case, data refresh into 8 environments and all in the same Db2
system
• More savings by having TARGET ID’s identical to SOURCE

• Patented solution to RESERVE OBID’s (unless multiple targets in same SSID)

• Eliminates need to translate every row – just page-header needed

• Yet another even quicker solution considered was using MOVE as
opposed to COPY

• Source Pageset RENAMED to Target VSAM pageset (no need to copy data) – reminder
that the Source data no longer exists.

• ID translation might be needed as well as Repair

Data Refresh implementation

Broadcom Proprietary and Confidential
Copyright © 2021 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom, Inc. and/or its subsidiaries.

Hopefully you enjoyed the content and
maybe even some ideas

